Management of Diabetes in Advanced Chronic Kidney Disease

&Hemodialysis

www.kidney-international.org

KDIGO executive conclusions

Check for updates

OPEN

Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment

Ian H. de Boer¹, M. Luiza Caramori², Juliana C.N. Chan³, Hiddo J.L. Heerspink⁴, Clint Hurst⁵, Kamlesh Khunti⁶, Adrian Liew⁷, Erin D. Michos⁸, Sankar D. Navaneethan⁹, Wasiu A. Olowu¹⁰, Tami Sadusky¹¹, Nikhil Tandon¹², Katherine R. Tuttle¹³, Christoph Wanner¹⁴, Katy G. Wilkens¹⁵, Sophia Zoungas¹⁶, Lyubov Lytvyn¹⁷, Jonathan C. Craig^{18,19}, David J. Tunnicliffe^{19,20}, Martin Howell^{19,20}, Marcello Tonelli²¹, Michael Cheung²², Amy Earley²² and Peter Rossing²³

JBDS-IP Joint British Diabetes Societies for inpatient care

Management of adults with diabetes on the haemodialysis unit

April 2016

Glycemic Monitoring and Management in Advanced Chronic Kidney Disease

Rodolfo J. Galindo,¹ Roy W. Beck,² Maria F. Scioscia,¹ Guillermo E. Umpierrez,¹ and Katherine R. Tuttle^{3,4}

Outlines

- Glucose and Insulin Metabolism
- Glycemic monitoring and targets in CKD/haemodialysis
- CR Limitations of glycemic biomarkers

- Management Of Hyperglycemia In Hospital/ Dialysis Unit
- Management Of Hypoglycemia In Hospital/ Dialysis Unit

Insulin and glucose metabolism with normal renal function

Insulin and glucose metabolism in early chronic kidney disease

Insulin and glucose metabolism in advanced chronic kidney disease &hemodialysis

Glycemic monitoring and targets in CKD

< 6.5%	HbA1c	< 8.0%
CKD G1	Severity of CKD	CKD G5
Absent/minor	Macrovascular complications	Present/severe
Few	Comorbidities	Many
Long	Life expectancy	Short
Present	Hypoglycemia awareness	Impaired
Available	Resources for hypoglycemia management	Scarce
Low	Propensity of treatment to cause hypoglycemia	High

Factors guiding decisions on individual glycated hemoglobin (HbA1c) targets

Glycemic monitoring and targets in hemodialysis

Association of mean hemoglobin A1c and adjusted all-cause mortality risk in patients with diabetes on hemodialysis: results of a meta-analysis of 10 studies (n = 83 684 patients).

Glycemic monitoring and targets in hemodialysis

- The target for HbA1c should be individualized but if the patient is on a hypoglycemia inducing treatment should be aimed (7.5–8.5%)
- It is likely that HbA1c (9.5%) represents poor glycemic control unless there is severe iron deficiency
- Reduction in treatment should be considered for patients with HbA1c< (7.5%) on treatments associated with increased risk of hypoglycemia

Limitations of glycemic biomarkers

 \mathbf{O}

- An increased level of blood urea nitrogen
- 🛯 Uremia
- Reflection Reflection
- Metabolic acidosis

- Shortened erythrocyte lifespan
- The widespread use of erythropoietin

○ Pespite the above, HbA1c is still recommended in current guidelines as the main biomarker for assessing glycaemic control in people with CKD

Alternative markers of glycemic control

- fructosamine and glycated albumin (GA) have been proposed as potentially better surrogate markers of glycemic control in patients with renal anemia and in receipt of erythropoietin
- The concentration of fructosamine is influenced strongly by serum protein concentrations and by low molecular weight substances such as urea or uric acid

Glycated albumin may offer the opportunity to assess glycaemic control over a shorter time period (15−20 days) and with greater accuracy in patients with diabetes on maintenance haemodialysis

- SMBG is especially important in subjects receiving treatments that may cause hypoglycemia, those who suffer from regular hypoglycemia and those with hypoglycemia unawareness
- In patients on MHDx SMBG results can also be affected by hemolysis, anticoagulation, hyperlipidemia and metabolic acidosis

- Received a service of the service of
 - 1) glucose oxidase-based (GO)
 - 2) hexokinase-based (HK)
 - 3) glucose dehydrogenase-based (GDH)

- high levels of acetaminophen, ascorbic acid, icodextrin, maltose, triglycerides, uric acid, or abatacept react with the sensor's electrode or have cross-reactivity with the enzyme
- Iow hematocrit (< 35%) may result in falsely high glucoses in the glucose meter using the GO technique
- high acetaminophen plasma levels (> 8 mg/dl) may result in falsely high blood glucose readings

Hypoxia (partial pressure of oxygen < 45 mmHg) or oxygen therapy (partial pressure of oxygen > 150 mmHg) may cause falsely high and low glucose in GO-based meters, respectively

High levels of triglycerides, uric acid (> 20 mg/dL), or bilirubin may cause pseudo hypoglycemia

CGM in CKD & Hemodialysis

CGM providers to recognize glucose patterns, including responses glucose patterns, including responses to meals, medications, acute illness, or other stressors

CGM use has the advantage of providing better assessment of glycemic patterns and insulin needs

CGM has the potential to become a new standard of care for assessment of glycemic control in diabetic patients treated by maintenance hemodialysis

Glycemic monitoring

1-1

<u> </u>					
Population	HbA1c	Frequency	Glycemic indexing by CGMI	Insulin requirements	
CKD stages 1 to 5	Yes	Twice per year Up to 4 times per year if not achieving target or change	Correlate interstitial glucose with HbA1c for individual patients	Lower 25% to 30% basal insulin dose for patients with T1D and CKD3	
CKD stage 5 on dialysis	No	Not applicable	consider	-Lower 50% TDD for T2Dpatients with CKD5 -Lower total daily insulin dose by 35%to 40% for patientT1Dwith CKD 5 - Lower (25%) basal insulin dose for pre HD	

Antihyperglycemic therapies

Drug	Trial	Kidney- related eligibility criteria	Primary outcome	Effect on albumi nuria	Effect on GFR loss	Adverse effects
Empagliflozin	EMPA-REG OUTCOME	GFR ≥30 ml/min	MACE↓	↓↓	$\downarrow\downarrow$	Genital mycotic infections, DKA
Liraglutide	LEADER	GFR ≥15 ml/min	MACE↓	Ļ	\leftrightarrow	GI
Exenatide	EXSCEL	GFR ≥30 ml/min	MACE↔	\leftrightarrow	\leftrightarrow	None notable
Sitagliptin	SAVOR-TIMI 53	GFR ≥30 ml/min	MACE↔	NA	NA	None notable
Linagliptin	CARMELINA	GFR ≥15 ml/min	Progressio n of ↔CKD	↓	\leftrightarrow	None notable

placebo-controlled clinical outcome trials assessing the benefits and harms of (SGLT2) inhibitors, (GLP-1) receptor agonists, and (DPP-4) inhibitors

MACE, major adverse cardiovascular events including myocardial infarction, stroke, and cardiovascular death

Antihyperglycemic therapies

Treatment algorithm for selecting antihyperglycemic drugs for patients with type 2 diabetes and chronic kidney disease

Antihyperglycemic therapies

Patient factors influencing the selection of glucose-lowering drugs

Medication	Metabolism	Labeling dosing by GFR	Dose in ESKD and/or dialysis
Metformin	Kidney	 -No dose adjustment if eGFR > 45 mL/min -Do not start and reduce dose if already on therapy and eGFR 30 to 45 mL/min -Discontinue if eGFR < 30 mL/min/ 	Contraindicated because of risk of lactic acidosis
Glipizide	Liver Excretion of < 10% of unchanged drug in urine	No dose adjustment if eGFR > 50 mL/min	No adjustment, but conservative initial dose (2.5 mg daily) recommended Use with caution
Glimepiride	Liver Excretion in urine 60% of drug	Consider alternative if eGFR < 15 mL/min/1.73 m2	Start lower dose of glimepiride (eg, 1 mg daily), caution recommended because of risk of hypoglycemia
Glyburide	Kidney Excretion of 50% of drug in urine	Avoid use	Contraindicated
Repaglinide	Liver Minimal excretion of parent drug in urine	No dose adjustment if eGFR > 30 mL/min/1.73 m2	Initiate conservatively at 0.5 mg with meals if eGFR < 30 mL/min/1.73 m2
Sitagliptin	Kidney Excretion of 87% of unchanged drug in urine	100 mg daily if eGFR > 50 mL/min/1.73 m2 50 mg daily if eGFR 30 to 50 mL/min/1.73 m2 25 mg daily if eGFR < 30 mL/min/1.73 m2	Maximum dose of 25 mg daily
Linagliptin	Liver Excretion of < 5% to 7% of drug in urine	No dose adjustment	No dose adjustment

Medication	Metabolism	Labeling dosing by GFR	Dose in ESKD and/or dialysis
Exenatide	Proteolytic degradation following glomerular filtration Excretion of majority of dose in the urine	No dose adjustment if eGFR > 50 mL/min/1.73 m2 Caution when initiating or escalating doses if eGFR 30 to 50 mL/ min/1.73 m2 Not recommended with eGFR < 30 mL/min/1.73 m2	Contraindicated
Liraglutide	Proteolytic degradation (not specific organ as a major route of elimination) Intact drug not detected in urine	No dose adjustment Post-marketing studies showed increased risk of gastrointestinal effects with higher doses Monitor for gastrointestinal reactions in patients with CKD	No dose adjustment Postmarketing studies showed increased risk of gastrointestinal effects with higher doses
Empagliflozin	Liver Excretion of25% to 50% of unchanged drug in urine	No dose adjustment required if eGFR ≥ 45 mL/min/1.73 m2	Avoid use and discontinue in patients with eGFR persistently < 45 mL/min/1.73 m2
Acarbose	Intestinal	Avoid if eGFR < 30 mL/min/1.73 m2	Contraindicated
Pioglitazone	Liver Excretion of negligible amount of unchanged drug in urine	No dose adjustment	No dose adjustment recommended Caution with use given fluid retention and adverse effects on bone metabolism

Management Of Hyperglycemia In Hospital/ Dialysis Unit

On rapid acting insulin:

Patients should reduce their usual breakfast (if morning dialysis), lunchtime (if afternoon dialysis) or evening insulin (if evening dialysis) by 10–15% at the start of each shift

On premixed/biphasic insulin:

Patients should reduce dose by 10–15% with breakfast (morning and afternoon dialysis) and with their evening meal (if starting evening dialysis)

On long acting insulin:

Patients should **reduce dose by** 25% in the morning or in the evening of dialysis

Management Of Hypoglycemia In Hospital/ Dialysis Unit

Hypoglycaemia is blood glucose <4 mmol/L and may be asymptomatic

(If pre-dialysis blood glucose < 7 mmol/L, give 20–30g carbohydrate prior to dialysis)

Mild hypoglycaemia

Sweaty

Shaky

Pale/hungry

Moderate hypoglycaemia Tingling lips/fingers Visual disturbance Anxious/restless (confusion)

Severe hypoglycaemia Decreased consciousness Fitting Coma

